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The determination of the numerical density of molecules flying off from slot chan- 
nel walls of different geometric shape whose internal surfaces are covered by a 
sublimable material is reduced to the solution of the Helmholtz equation. Simple 
formulas are obtained for computation. 

The asymptotic of rarefied gas flow of Hill-Shaw type in the gap formed by parallel walls 
located at a distance H whose scale L in the plane of symmetry of the gap is quite large as 
compared with the mean free path length of the molecules (Kn L = I/L << i) is constructed in 
[i]. The flow of vapor in the gap occurring as a result of sublimation (evaporation) or con- 
densation on the internal surface of slot channel walls to which the necessary quantity of 
heat is supplied from outside (eliminated) is considered as an illustration. The problem 
was solved in a linear approximation, which corresponds to "slow" phase transition processes 
[2], when the macroscopic velocity of the vapor along the normal to the interphasal surface 
compared with the mean thermal velocity of the molecules and the relative temperature change 
are small. 

Analysis of phase transformation on slot channel isothermal walls (T w = const, ~w = 0) 
from the formal viewpoint is simpler than elucidated in [i]. In this case new = new(T w) = 
const and, consequently, a homogeneous Helmholtz equation can be written at once from (19) 
and (20) obtained in [i] (without additional linearization) for the new independent variable 
6n w = n w - new which characterizes the degree of nonequilibrium of the process being studied 

A6n~-- c~Sn~=O, 
_~ (i) 

c~-7o/~; 7~ : (I- ~ ]/~Q$0) (=) 
In contrast to (22) from [i], this equation always has a negative coefficient (-c~) before 
the 6n w, which somewhat simplifies the investigation of appropriate problems (a single mode 
of solution in the whole range of variation of the physical parameters; it is not necessary 
to pose additional conditions of the radiation condition type in the analysis of phase transi- 
tions in an infinite slot channel). At the same time, attention should be turned to the fact 
that this equation is singularly perturbed if only the condensation coefficient $ characler- 
izing the fraction of molecules captured by the phase transition surface out of the whole 
number contained in the incident stream is not a quantity of the same order of smallness 
as the parameter s = H/L << i. Therefore, for ~ >> s (c 4 >> i) a perceptible change in the 
numerical density of the molecules flying out from the channel walls will occur only in a 
comparatively narrow band, adjoining theslot channel exit and being an original "boundary" 
layer in whose computation the one-dimensional analog of (i) can be utilized (A = d2/d$2; $ 
is measured along the normal to the open part of the slot channel contours or the wall do- 
mains in which phase transformations occur). The width of this band is b, = O(H/~0) = O(H/~); 
consequently, (i) has meaning only for $ < 1 since otherwise the asymptotic of the Hill-Shaw 
type flow constructed under the assumption that the linear flow scale in the plane of the 
channel is many times greater than its height H/L << 1 [3] is not applicable in the band 
mentioned. This constraint is substantial: the theory elucidated here is not applicable to 
the solution of problems on phase transformations on isothermal slot channel walls with in- 
sufficiently small condensation coefficients. 
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If the condition $ << 1 is satisfied, then (i) is applicable, and all methods discussed 
in [i] are suitable for its solution, taking into account the above-mentioned simplifying 
analyses of the circumstances. All the solutions presented in [I] are converted, without 
difficulty, into solutions of the problems considered here that have the same geometry. Thus, 
for instance, for an open gap between parallel rectangular plates (-i ~ $ ~ i, -qo  ~ q ~ qo,  
b/L = q0) the formula characterizing the distribution n w of the numerical density of the mole- 
cules, flying off from the walls, over the gap has the form 

5nw = 8nw (s Fo (~, &) + _1/'_~'o .cos (p,n~) . 
,,=0 ~ { ~ , + q )  oh( ~;,+o~ ~0) 

Here 6nw(s = nw(s - new(T w) = const, nw(r) is determined by the pressure at the slot chan- 
nel exit, $ = +i, q = + q0, [PP(F) = mnw(P)RTw]; Dn = ~(n + 1/2); F0(~, c~) = ch(c~$)/ch(c~). 

As regards the other solutions presented in [i], they are complicated somewhat in this 
paper: we shall consider that thephase transformations do not hold on the whole internal surface 
of the channel walls. Such a formulation of the problem is of interest, say, for the analysis 
of the sublimation of a thin coating deposited preliminarily on the whole wall surface or 
on part. For the two examples examined in [i], the solutions (open on two sides (~ = -+I) 
planar slot channel (s = 0), and the gap between two discs of radius ~ = 1 (s = i)) we assume 
that the phase transformations occur only in the domain I~I <- ~' < i. Then by analogy with 
(24) from [i] we can write for the points $, <_ $,': 

F, (; , ,  1) ~ ~' (3)  
, - ~ ~ - h~  - 

The second forms of (24), presented in [1], correspond here naturally to the functions Fs 
(g,, i) since (-c~) < 0: 

Fo(;,, I).-- ch(1, ~,) F<(~,, I) [~(t, ~,) 
ch {~) L {t) 

where 10(x) is the Bessel function of the imaginary argument. 

For the domains g' < I$I < i within which phase transformations do not occur, a relation- 
ship can be written that characterizes the continuity condition for the vapor stream during 
stationary progress of the process 

~ d6nm K~= const, (&,z~ (s : 61h<.(1)), 
d~ (4) 

~o_  _~f,~ (F)  - -  ~ (~') a,,,<. ( r )  .... 6 , , .  (~') 
1--~" , Ez:= - - l n T '  

But 

Ko-~ - -  

s  - ~' 

d6n~ 
a~/I;-..~ ,-o 

d6n,. 

~1~.~ "-o 

& th tc~ ) 81~,,, (~'). 

I~ (q~') 
- c~' 6,z,,. (~'). 

:,} (&~') 

( 5 )  

Therefore, in the domain I ,l < = 

ch ~, 

i ,  (.~:,:) 

An exp ress i on  f o r  the  numer i ca l  d e n s i t y  o f  mo lecu les  f l y i n g  o f f  f rom the  w a l l s  i n  the  
domains 6 ~ < $" < ~ < 6' < i of the gap between parallel annular plates (6 ~ < ~ < i) can also 
be obtained in an analogous manner when the circles $ = $" and $ = 6' correspond to the bound- 
aries of the phase transition surface. In this case (3) takes the form 
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: ,  (L ,  ~;:")) ,:-= : (L ,  ~',<">) 
(,*, ~*) I (x, .i,,) == lo (x) Ko (7) ~ Io (t/) Ko (x), 

@,,, (~2) = 6,:~,. ( r )  z, 

~ _  

z~: .~, In (~ , / , : )  ~21n(~,,,'c,,! l ; ( ~ ; ,  g , )  ..... 1 

(7) 

1 

_ ~ ,  In ( ~ , / c , )  [Io (~,, ~,) Io (~,, ~,)--Io (~,, ~,)I;  (~,, ~,)l--I'o (~,, ~,) , ( S )  

~, In (~,/c~) Io (~,, ~,) --I 

i ,  In (~,/c 0 Io (~,, ~,) -- 1 

I' (x, g) . I '  (x, g) = 11 (x) Ko (g) - -  I0 (g) K1 (x). I0(x, u ) -  z ( ~ ,  ~,) ' 

The e x p r e s s i o n s  (6)  and (7)  can be u s e d ,  s a y ,  t o  d e t e r m i n e  t h e  t ime  o f  vacuum s u b l i m a t i o n  
o f  a t h i n  c o a t i n g  d e p o s i t e d  on t h e  i n t e r n a l  s u r f a c e s  o f  s l o t  c h a n n e l  w a l l s  i f  t h e  p r o c e s s  
proceeds quasistationarily, i.e., if the following condition is satisfied 

1 08n~<< IV <u>! -I/2RT~" 
n~o Ot L 

The angular brackets denote taking the average in velocity space. 
above, the solutions follow from the expression (6) 

o~n~, _ ~rz~ (r) Oqh (L, ~,, cO ~i~, ( i o )  
ot o(, dt 

and the quasistationarity condition 

L d~; 
r 2RT~ dt 

By virtue of (13) from [i], it will 

i--6 

is written in the form 

o < u > (L, ~) /~L+ (t/L) < u > (L, ~ )  - - <  
oq,~(L, ( , ,  cO~eL 

be satisfied if 

~o8o n~o \ -L- 

(9) 

In the two examples examined 

Here P0, 60 are the density and initial thickness of the subliming coating. 

In the problems under consideration ~ = O(s). Therefore, for quasistationary progress 
of the process it is necessary that the surface density of the coating P060 be many times 
greater than m6nwH/E. But m6nwH is a quantity commensurate with the surface density of the 
sublimate in the slot channel, and consequently, the formulated condition is satisfied at 
the low pressures corresponding to the regimes being studied. 

In the general case, the study of the kinetics of quasistationary sublimation of a thin 
layer on the internal walls of a slot channel reduces to the solution of sufficiently complex 
nonlinear and nonstationary functional equations. An interesting feature of the examples 
in which 8n w is determined by (6) is the fact that the quasistationary process of vacuum sub- 
limation of a coating which has been deposited by a layer of thickness 8 o << H on the channel 
wall internal surfaces will proceed self-similarly for them. Indeed, by using (19) from [i] 
and (6) for the vapor flux density distribution on the wall surfaces on which there is still 
a coating at the time t, an expression can be written 

�9 ~ I/~-T~' 8n~(r). J' (~,) = J,,,r (b, ~*, cO, j~ = V (li) 
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Therefore, we obtain for two arbitrary points characterized by the dimensionless coordinates 
~,i and $,2 

/z (~.,) c01 (~.,) %(~.) = ch (~,); 

h(L~) o~ (L~_) co,(L) -- Io (L). (12) 

Naturally points are considered here that lie on the phase transformation surface, i.e., 
l$,nl < [$ '[ The coordinate $,'(t) of the boundary of part of the internal wall surface = ~'r �9 

having the coating varies in time as the boundary advances deep into the slot channel. The 
expression (12) means that sublimation from the phase transformation surface always occurs 
according to an identical law independently of the location of the boundary ~,'(t) at this 
time t, more exactly, the curve js $,') is transformed affine!y into the curve 

as the  parameter  ~ , '  changes.  

A f t e r  the  phase t r a n s f o r m a t i o n  boundary has been d i s p l a c e d  deep i n t o  the  s l o t  channe l ,  
zero c o a t i n g  t h i c k n e s s  w i l l  always cor respond to  i t ,  i . e . ,  t he  fo l l owing  c o n d i t i o n  w i l l  be 
s a t i s f i e d  

lira 6 [~,, ~, (t)l ~_:0, 
L'~:(O (14) 

and t h i s  means t h a t  a c o a t i n g  l a y e r  of  t h i c k n e s s  6 0 w i l l  be c a r r i e d  away a t  p o i n t s  of  the  
s u r f a c e  having  t h e  c o o r d i n a t e  ~ , '  ( t )  up to  t he  t ime t ,  whi le  a t  p o i n t s  wi th  the  c o o r d i n a t e  
I~,1 < ~...(t) a l a y e r  of  t h i c k n e s s  6 0 - 6[~ ,  $ ' ( t ) ]  w i l l  be c a r r i e d  away, consequen t l y ,  
t a k i n g  (]'2) i n t o  account  

a0-- a [L, G (t)] ~ (L) 
80 = ~t [~. (t)l" (15) 

T h e r e f o r e ,  in  the  two examples under c o n s i d e r a t i o n ,  a f t e r  t he  beg inning  of  boundary move- 
ment deep i n t o  t he  s l o t  channe l ,  the  c o a t i n g  t h i c k n e s s  p r o f i l e  w i l l  be de sc r ibed  by the  un i -  
v e r s a l  dependence 

6(~,, ~ , ) = 6 o [ 1  o~(~,) ] " 7  " . mz(~,) (16) 

This l a t t e r  c i r cums tance  s i m p l i f i e s  the  d e t e r m i n a t i o n  of  the  law of  phase t r a n s f o r m a t i o n  
f r o n t  ,~otion a long the  channel  wa l l s  so much so t h a t  i t  pe rmi t s  r e d u c t i o n  of  the  problem under  
c o n s i d e r a t i o n  to  t he  f o l l o w i n g  e l emen ta ry  problem. The c o n d i t i o n  

d~ 06 06 d~A 
_ _  - -  . _ _  

dt Ot 6~, ]L =~ ~ dt 0 ( 17 ) 

should be satisfied on the moving boundary ~,'(t) by virtue of (14), and therefore, the rate 
of phase transformation front displacements is 

d~, __ ( 06/0~ ~ (18) 
dt \ a6/o~, ,! L=L~. 

Using (ii) and (16), we obtain 

06 

at Po 9o ( 19 ) 

aa ~o; (L) % (L) = sh (L), 
~:~ = - ao  ~G---~' ~o; (~,)-- 4(~,). (2o) 

The re fo re  t a k i n g  (18)  i n t o  account ,  we can w r i t e  f o r  the  d imens ion less  t ime  % = ( j m t ) / ( P 0 6 o )  

- - - -  1 

oG ~ ,G)  
I f  t he  d imens ion l e s s  c o o r d i n a t e  ~0 cor responds  to  the  i n i t i a l  p o s i t i o n  of  the  c o a t i n g  bound- 
a r y ,  then  the  t ime of  boundary d i sp l acemen t  u n t i l  c a n c e l l a t i o n  of  the  whole c o a t i n g  l a y e r  
in  the  two cases  under  c o n s i d e r a t i o n  w i l l  be de te rmined  by the  e x p r e s s i o n  

~.0 co; (L) (21) 
~z= .I ~;l (L, c~) ~z (L) 

0 
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Fig. i. Total time of sublimation of a plane slot channel wall coating 
as a function of the initial position of the coating boundary: curves i, 
2, ..., i0 correspond to the values c 4 = i, 2, .... i0. 

Fig. 2. Total time of sublimation of an axisymmetric slot channel coat- 
ing as a function of the initial position of the coating boundary: curves 
i, 2, ..., I0 correspond to the values c 4 = i, 2 ..... i0. 

The last integrals can be expressed in terms of elementary and cylindrical functions 

~o(~, cO = + (~)~+ (c~--~)(~-- th~), 
z 

(22) 

4 [ '~ I 0 " k ~, / 2 o(~,) 

The time preceding the beginning of front motion, i.e., the time of coating sublimation 
along the initial line of the front ($, = $~), must be appended to the time intervals formed 
above that correspond to phase transformation front advancement to the middle of the plane 
channel open on two sides (%o) or to the center of an axisymmetric (%1) channel. By virtue 
of (19)the dimensionless times %s determined by the expressions 

e. l=l+(c , - -g~) thg~;  e l , = l + g ~ l n  ~ I0(~) (23) 

correspond to  t h i s  pe r i od  in the  two cases  under  c o n s i d e r a t i o n .  The t o t a l  t ime of  co a t i n g  
s u b l i m a t i o n  i s  de te rmined  by the  sums %~ = %s + %s 

~o 1 l~o~ ~ = 1 + c~.,-- - f -  ~ , j ,  
(24) 

d- G-, 
The results of calculations using the last formulas are presented in Figs. i and 2 for 

a plane channel and the gap between discs. 

If the internal surface is initially coated entirely by a subliming layer, i.e., t ~ = c#, 
then the sublimation time will depend quadratically on the extent of the plane channel or 
the disc radius since in this case 

1 c~, ~x: I - = - - 1  c~. (25)  
r I-:- 2 4 

For very low values of the coefficient ~ and not too small values of the parameter ~, 
when c# << i according to (I), the total coating sublimation time is determined in practice 
by just the first stage (%s since the sublimation tempo in the whole extent of the slot 
channel is almost identical and limited only by the phase resistance of the subliming sur- 
face: the hydraulic resistance to the sublimate flowing in the gap is negligibly small. As 
is seen from (24), in this case 

= 1 + o (c~). 
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The coating sublimation process for annular plates forming a doubly connected slot chan- 
nel (in planform) is not self-similar and it is impossible to write a simple formula of the 
type (24) or (21) to compute the sublimation time. However, even in this case the kinetics 
can be computed comparatively simply by numerical methods since the internal and external 
phase transformation fronts also remain circles here that move oppositely to each other until 
they meet, which means completion of the process. For instance, a sufficiently simple al- 
gorithm can be proposed that will reduce to a step-by-step process of the following kind: we 
separate the domain $" < ~ < ~' having the coating into N annular layers ~n < ~ < $n+i, $n = 
$" + (n/N)(g' - $") and we calculate the change in coating thickness at the middle of each 
annular layer by formulas similar to (19), i.e., for $ = gnl = 1/2(gn + gn+1) the functions 
~($nl, t) are calculated. After the coating thickness has become zero, at the middle of one 
of the external annular layers, the appropriate front is displaced one step into the domain 
under consideration, i.e., continuous phase transformation front motion is here replaced by 
a stepwise process. It is natural to expect that the error in determining the coating sub- 
limation time by such a numerical method will tend to zero as N ~ ~. 

NOTATION 

H and L, height and linear scale of the flow in the middle plane of a slot channel, re- 
spectively; X, mean free path length of the molecules; E = H/L; T, local temperature; ~ = 
(T - T0)/T0; n, numerical molecule density; ns , equilibrium value of the numerical mole- 
cule density at the wall temperature T w (on the saturation line); ~ = (n - n0)/n0; 6, conden- 
sation coefficient; R, universal gas constant; m, molecule mass; U, velocity; t, time; 
Qv(~ dimensionless velocity (flow rate) averaged over the channel height; ~ = J~H/3~; 
Jm, vapor mass density from the channel wall; $, q, dimensionless rectangular coordinates in 
the middle plane of the channel, referred to the channel height; and Kn, Knudsen number. Sub- 
scripts: w, on the wall; and 0, at the point r 0. 
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OXYGEN-FREE VAPOR CONVERSION OF METHANE 
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A reactor for the purpose of methane conversion is described. Comparison of a 
calculation of a mathematical model of the device with experimental data shows 
good agreement. 

At the present time methane conversion is the basic industrial method for production 
of technological gases used to extract iron from ores by the direct reduction method. Tube 
furnaces used for this purpose require a large amount of expensive special fire-resistant 
steel, while mine reactors generate expensive gas due to their use of oxygen. 

The reactor with a retarded fluidized bed described in [i] is free of these short- 
comings. A diagram of this device is shown in Fig. I. The retort 14 is packed with a 
catalyst 5, in the pores of which a fine grain material which acts as an intermediate heat- 
exchange agent circulates. In the "boiling" layer of these particles above the packing 7 
a tuyere consisting of tube 9, "sleeve" i0, and perforations 8 is immersed~ 
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